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In this work we describe a two-dimensional computational model of 
the cochlea (inner ear). The cochlea model is solved by modifying and 
extending Peskin’s immersed boundary method, originally applied to 
solving a model of the heart. This method solves the time-dependent 
incompressible Navier-Stokes equations in the presence of immersed 
boundaries. The fluid equations are specified on a fixed Eulerian grid 
while the immersed boundaries are specified on a moving Lagrangian 
grid. The immersed boundaries exert forces locally on the fluid. These 
local forces are seen by the fluid as external forces that are added to the 
other forces, pressure and viscous, acting on the fluid. The modifica- 
tions and extension of Peskin’s method involve both the fluid solver and 
the calculation and transfer of immersed-boundary forces to the fluid. 
For the fluid, the Navier-Stokes equations are solved on a doubly 
periodic rectangular grid in a second-order accurate manner using a 
projection method developed by J. Bell, P. Colella, and H. Glaz 
(Lawrence Livermore National Laboratory Report UCRL-98225, 1988). 
The extension of the immersed-boundary forces from the moving grid 
to the fixed fluid grid and the restriction of the fluid velocities from the 
fixed fluid grid to the moving grid have been modified to be second- 
order accurate. The calculation of the immersed-boundary forces can 
be done either explicitly or implicitly or a combination of both. The 
cochlea is modelled as two fluid chambers separated by a flexible parti- 
tion whose stiffness varies exponentially along its length. The stapes is 
represented by a moving piston and the bony outer walls are allowed to 
be either straight or tapered. A travelling wave propagates along the 
flexible partition under the influence of the moving piston, and the 
dependence of this wave on partition stiffness is studied. Also included 
are studies of transient signal analysis and comparisons of model results 
to experimental data and asymptotic results. c 1992 Academic Press. Inc 

1. INTRODUCTION 

The beautiful complexity of the ear has attracted a large 
number of researchers over the years. Because of this 
complexity, an understanding of how the ear functions is 
incomplete, and theories of auditory system operation are 
still evolving. This report is concerned with modelling one 
part of the auditory system operation-the biomechanical 
behavior of the cochlea, or inner ear. In order to describe 
this behavior, we use a computational model based on the 
equations of motion of a coupled fluid/immersed-boundary 
system. Our method is based on one originally developed by 
Peskin [ 1 l] for modelling fluid dynamics in the heart and 

has some features in common with particle-in-cell methods 
[S]. The immersed boundaries are used to describe both the 
flexible and rigid parts of the cochlea, such as the basilar 
membrane and the surrounding bone. These various parts 
of the cochlea are represented by material points. Each 
point exerts a force on the surrounding fluid in a specified 
manner depending on its position. In addition, each point 
moves in accordance with the local fluid velocity. Thus the 
fluid and the points interact to describe the response of the 
cochlea to vibrational stimulus. The advantage of this type 
of method is that the fluid only feels the presence of the 
immersed boundaries as an external force field, and hence 
we can model the fluid dynamics on a regular rectangular 
grid. Since the immersed boundaries are not boundaries of 
the fluid domain, we eliminate the need to deal with com- 
plicated discretization of derivatives at fluid grid points near 
the immersed boundary. We can, therefore, easily model 
immersed boundaries with complicated geometries. 

In order to model the cochlea with this immersed-bound- 
ary approach, we have had to modify Peskin’s original semi- 
implicit method. His original method was designed to 
model the heart and, as such, needed to allow for large 
movements of the immersed boundaries. In addition, the 
material points were interconnected in order to model 
elastic boundaries. This resulted in a nonlinear system of 
equations describing the movement of the boundary points 
that was solved as a minimization problem for an 
appropriate energy functional. However, the material points 
in the cochlea are either completely stationary as in the 
bone or move only slightly as in the basilar membrane. 
Furthermore, there is little mechanical coupling of the 
points on the membrane. We have taken advantage of this 
and uncoupled these boundary points with the result that 
the equations of motion describing the boundary point 
movement are a linear system. 

We have used this modified semi-implicit method to 
model a simple version of the cochlea. The model is success- 
ful at capturing the essential behavior of the travelling wave 
and at describing the dependence of peak basilar membrane 
displacement on frequency. However, while we can model 
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moving boundaries adequately, the nature of the cochlea 
problem leads to new difficulties. Stationary or nearly rigid 
points are modelled as very stiff springs, and when the 
spring stiffness is too large, the semi-implicit method suffers 
from stability problems. This is due to the physical stiffness 
of the boundaries resulting in a numerical “stiffness” that 
causes the calculated forces to be too large and the immer- 
sed-boundary points to overshoot their correct positions. 
The result is that stationary boundary points oscillate about 
their equilibrium positions in an undesirable manner. The 
usual method for solving “stiff” differential equations is to 
use an implicit method. 

With the above problems in mind, we further modified 
Peskin’s method to give a fully implicit version that deals 
successfully with the stiffness problem. Stationary points no 
longer exhibit unwanted oscillations. Going to a fully 
implicit method also has the advantage of giving us more 
choice in the mechanical properties of the points we can 
model. Now we are allowed to specify that certain points 
have specified velocities while other boundary points obey 
specified force laws. 

In addition to the stability issue discussed above, we have 
also improved the accuracy of the immersed-boundary 
method. Peskin’s original method is first-order accurate in 
time. In order to capture the behavior of the cochlea with a 
minimum of computational effort, we have made the 
method second-order accurate. These improvements fall 
into two categories: those involving the fluid equations and 
those involving the boundary forces. The accuracy improve- 
ment in the fluid equations is achieved by using an incom- 
pressible Navier-Stokes solver developed by Bell, Colella, 
and Glaz [3] in place of the projection method of Chorin 
[6]. The accuracy of the boundary force calculations is 
improved by making changes to the way forces and 
velocities are communicated between the fluid grid and the 
immersed-boundary grid. 

The main function of the cochlea is to convert mechanical 
vibrations induced by sound waves into electrical nerve 
impulses. When the fluid is excited, a pressure wave travels 
through the fluid of the cochlea, deflecting the basilar mem- 
brane. When the basilar membrane is deflected, the hair 
cells undergo a shearing motion due to the motion of the 
tectoral membrane and the Organ of Corti. The movement 
of these hairs cells results in the firing of nerves, which send 
signals up the auditory nerve to the brain. The cochlea also 
serves as a filtering mechanism that results in the separation 
of differing sound frequencies. 

The cochlea’s frequency discrimination is due mainly to 
the varying stiffness of the basilar membrane. As a wave 
moves down the basilar membrane, the decreasing stiffness 
of the membrane causes the amplitude of the wave to grow. 
The wave continues to grow until frictional damping of the 
fluid dominates and causes the wave to rapidly decay. The 
location of the maximum displacement depends on the 
frequency of excitation. As the location changes, different 
groups of hair cells are activated which the brain senses as 
sounds of different pitch. This is known as “cochlear 
tuning.” 

There has been extensive work over the years in cochlea 
modelling and Viergever [18, 161, Zwislocki [21], Rhode 
[ 131, and Allen [ 1 ] have given reviews of these models. In 
most of these models, the fluid is assumed to be incom- 
pressible, inviscid, and linear. This assumption results in 
having to solve Laplace’s equation for the pressure inside 
the cochlea. The boundary conditions are specified such 
that at the basilar membrane, the dynamic equilibrium 
between the membrane and the fluid is governed by 

d2h(x, t) Mx, t) 
M(x) 7 + R(x) 7 

+ K(x) 4x2 t) = -2Mx, 0, t)l, 

2. COCHLEA MODEL 
where M, R, and K are the mass, damping, and stiffness of 
the membrane, h(x, t) is the instantaneous displacement of 
the membrane, p(x, y, t) is the pressure, and [p(x, 0, t)] is 
the hydrodynamic pressure difference between the top and 
the bottom sides of the membrane. The human cochlea is a liquid-filled tube, 35 mm long, 

that has an average cross-sectional area of 2 mm2. This tube 
is curled up and coils about 2.5 times. The coiled tube has 
three liquid-filled chambers: the Scala vestibuli, the Scala 
media, and the Scala tympani. The Scala vestibuli is 
separated from the Scala media by Reissner’s membrane 
which is very flexible. The Scala media and the Scala tym- 
pani are separated by the basilar membrane which varies in 
flexibility along its length and is responsible for the unusual 
behavior of the cochlea. On top of the basilar membrane sit 
other structures, mainly the tectoral membrane and the 
Organ of Corti which contains the hair cells. Other mam- 
malian cochlea are similar. 

2.1. Assumptions 

In our model we include both the viscosity of the fluid and 
the nonlinear convection and solve the full incompressible 
Navier-Stokes equations. With fluid viscosity present as the 
damping mechanism, we let the mass A4 and the damping R 
of the membrane be zero. The force the membrane exerts on 
the fluid is then the force of a massless spring. 

Our model of the cochlea reflects the fact that certain 
assumptions and simplifications have been made about the 
geometry and mechanical properties of the cochlea. These 
simplifications are made in order to give a computationally 
tractable model while still describing the essential physics of 
the cochlea. Figure 1 shows our two-dimensional depiction 
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FIG. 1. Two-dimensional version of the cochlea. 

of the cochlea. The assumptions and simplifications are as 
follows: 
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Spiral coiling. Because we are using a two-dimensional 
model of the cochlea, we have had to make certain 
geometrical simplifications in characterizing its three- 
dimensional structure. We replace the spiral coil with a 
straight tube. The effect of this simplification has been dis- 
cussed in Von Bekesy [ 191, Viergever [ 171, Loh [lo], and 
Steele and Zias [ 151, and they conclude that the coiling 
should only slightly affect the basilar membrane motion. 
The outer walls of the cochlea in Fig. 1, excluding the stapes 
and round window, are rigid. 

Interior structures. Structures inside the cochlea such as 
the limbus, tectorial membrane, and the Organ of Corti are 
neglected and only the basilar membrane is included. While 
the presence of these structures affects the behavior of the 
basilar membrane to some extent, we lump them together 
with the basilar membrane in order to reduce the com- 
plexity of the moving interior structures. The three channels 
of the cochlea, the Scala vestibuli, the Scala media, and the 
Scala tympani, are reduced to two channels by neglecting 
the very flexible Riessner’s membrane. The stapes is 
assumed to behave like a piston as discussed by Viergever 
[ 161. The stapes and round window are also assumed to 
have equal cross sections. 

Incompressible jluid. As discussed by Viergever [IS], 
the fluid in the cochlea can be regarded as incompressible 
for most frequencies except, perhaps, the highest in the 
hearing range. Even at the highest audiofrequencies, the 
effects of compressibility will only have a minor effect on 
basilar membrane motion. Consequently we assume that 

the fluid is incompressible with a density of 1 g cm p3 and 
viscosity of 0.01 g s - ’ cm ~ i. 

Basilar membrane. We summarize here the discussion 
given in Le Veque, Peskin, and Lax [9] concerning the 
simplifications required for a two-dimensional version of 
the basilar membrane. The real basilar membrane has some 
mass. It is useful in terms of the immersed-boundary 
method to neglect this mass. We note Von Bekesy’s observa- 
tion [ 191 that cochlea tuning was absent when the fluid was 
drained from the ear and the basilar membrane was excited 
by air pressure alone. This observation eliminates basilar 
membrane resonance as the mechanism for cochlea tuning 
and provides some justification for neglecting inertial 
effects. 

Another simplification in going from three dimensions 
to two involves the mechanical coupling of the basilar 
membrane. Since the basilar membrane is a narrow plate 
clamped along its edges, longitudinal coupling is negligible 
compared with the transverse coupling. The basilar mem- 
brane is very stiff in the transverse direction and acts as a 
very flexible membrane in the longitudinal direction. This 
coupling of the plate to its edges is represented in the two- 
dimensional basilar membrane as a restoring force that is 
independent at each point along the basilar membrane, with 
magnitude proportional to the vertical displacement of the 
membrane at each point. This gives a Hooke’s Law force of 
the type we will describe in more detail below. Experimen- 
tally (e.g., [ 19]), the stiffness of the membrane is known to 
vary exponentially along its length. This gives a stiffness, or 
spring constant, of the form 

S,e”.‘, (1) 

where S, is a constant, 1 z - 1.4 cm-’ in humans and x 
varies from zero at the basal end of the basilar membrane to 
3.5 cm at the apical end in humans. In this section we 
assume the restoring force acts at each point along the 
basilar membrane separately. The restoring force used here 
is purely elastic. In reality, the membrane may be 
viscoelastic, with a velocity-dependent friction term. 

2.2. Equations 

With the above restrictions and assumptions in mind, we 
use the following equations to describe the mathematical 
model of the cochlea. For the fluid we use the incom- 
pressible Navier-Stokes equations: 

p(u,+u.Vu)= -vp+,uv*u 

v.u=o. 

In addition, we specify the conditions 

u=o 

(2) 

(3) 

(4) 
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on the rigid boundary. Along the boundary that coincides 
with the stapes, we specify the sinusoidal motion 

u(x, t) = a, + a, sin(wt) (5) 

where a, and a, are constants. Along the boundary that 
coincides with the round window, the velocity would be the 
negative of (5) in order to satisfy conservation of mass. 
Along the basilar membrane, we have 

44 44 t), t) = 0, 4x, 0, f), f) = M-c r), (6) 

where y = h(x, t) is the instantaneous position of the basilar 
membrane, and u and u are the horizontal and vertical com- 
ponents of u. The basilar membrane exerts a vertical stress 
on the fluid that takes the form 

[PI = -&$(x, t) exp( -Ax), (7) 

where [p] is the jump in pressure across the membrane. 
Since the fluid is incompressible, the viscous stress is zero 
and this jump in pressure is the jump in the total vertical 
stress. 

To solve the above mathematical model, we use a 
modified version of Peskin’s immersed boundary method. 

3. NUMERICAL METHOD 

3.1. Overview 

Peskin’s original method [ 111 was aimed at solving a 
model of the blood flow pattern in the heart. His method has 
also been extended by Fauci [7] to study aquatic animal 
locomotion and by Fogelson [8] to study blood flow 
during clotting. With this method the whole structure is 
imbedded in a large rectangular fluid domain with periodic 
boundary conditions and a uniform computational grid. 
This allows the Navier-Stokes equations to be solved via 
finite difference methods on a regular grid and fast Fourier 
transforms, which has the advantage of great computational 
efficiency and speed. The boundaries of the mathematical 
model become immersed boundaries within the enlarged 
fluid domain and are represented numerically by a separate 
set of discrete grid points that move relative to the fluid grid. 
The boundary points affect the fluid grid via the forces they 
exert. The fluid in turn acts on the immersed boundaries by 
moving them at the local fluid velocity. In this section we 
review Peskin’s method with the aim of providing the foun- 
dations for the immersed-boundary method on which our 
computational model of the cochlea is built. 

The fluid region is described by the time-dependent 
incompressible Navier-Stokes equations 

p(u,+u.Vu)= -Vp+pVu+f (8) 

v.u=o (9) 
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in a two-dimensional rectangular periodic domain, Q. 
Immersed-boundaries are represented by a singular force 
density, f(x, t), which is nonzero only in the regions 
containing the immersed boundaries. Associated with the 
immersed-boundary X(x, t) is a boundary force with 
intensity F. The force density f used in the Navier-Stokes 
equations is then given by 

f(x, t) = j F(s, t) 6(x - X(s, t)) ds, (10) 
B 

where B is the domain of the immersed boundary. The force 
f has a delta function singularity since we are integrating a 
two-dimensional delta function only in one dimension. Even 
though the interaction of the fluid and the boundary is local, 
the entire fluid feels the effects of a force at a boundary point 
since V . f acts as a source term for the pressure field. 

The immersed-boundary forces F,, acting at each point 
X, of the immersed boundary, will depend on the nature of 
the immersed boundary. For a purely elastic boundary, the 
forces depend on the positions of the boundary points and 
have the general functional relationship of 

F = F(X,, X,, . . . . X,). (11) 

As an example, for Fauci’s swimming organism [7], the 
forces are given by 

where E is an energy function that depends on both the 
length of the segments of the boundary and on the angle 
between the segments. In our model of the cochlea, we 
model the forces by Hooke’s law. That is, we have assumed 
that the restoring force acting to return the basilar mem- 
brane to its resting position is purely elastic and acts at each 
point of the membrane independently of the other points as 

(12) 

F, = 8x0 - xk), (13) 

where S is the stiffness, and X, is the equilibrium position of 
the point. In Fauci’s case [7] the boundary points are not 
independent but coupled, making the determination of the 
forces in (12) a minimization problem. By treating the 
boundary points along the basilar membrane as inde- 
pendent, we have reduced the problem to solving for the 
forces directly from the displacements. 

In addition to the equations of motion for the fluid, the 
equation of motion for the immersed-boundary points is 

axh 2) ~ = u(X(s, t), t) at 

=j- u(x, t)d(x-X(s, t))dx. (14) 
R 
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In other words, the immersed boundary moves at the local 
fluid velocity. 

In order to solve the above equations of motion, the fluid 
domain and the immersed boundary have to be discretized. 
The two-dimensional fluid domain is divided into an N x N 
square grid (or a M x N uniform rectangular grid) with a 
grid cell dimension of h = l/N. Defined on the fluid grid are 
the fluid quantities: velocity ub= u(ih,jh, n At), pressure pz, 
and force f,;, where i, j= 1, 2, . . . . N and u, f E RzN , and 
p E RN2. Defined on the immersed-boundary are the loca- 
tion, velocity, and force: X; = X(k As, n At), UE, and Fi, 
where k = 1, 2, . . . . m and X, U, F E R*“. 

With the above discretization we can numerically solve 
the equations of motion. The solution of the Navier-Stokes 
equations (8)-(9) is done using either Chorin’s method (as 
implemented by Peskin [ 111) or the method developed by 
Bell, Colella, and Glaz [3]. 

The integral equations (10) and (14) are discretized as 

f;,= E F,D,(X,) As, (15) 
k=l 

u,= -f U,D,(x,) h2, (16) 
i.j= 1 

where U, is the velocity of the kth immersed-boundary 
point, As is the length of each immersed-boundary segment, 
and D, is a discrete form of the delta function. The discrete 
delta function in (15)-( 16) is defined in the same manner as 
Peskin’s [ 111 by 

D,,(x) = d(x- ih) d(y- jh), 

where h is the fluid grid spacing and 

(17) 

0, Irl 2 2h. 

Since (15) describes an extension of immersed boundary 
forces to the fluid grid, we denote this operation by 

EF=f, (19) 

where E E R2N2 x 2m and is called the extension operator. 
Likewise, (16) is a restriction of fluid velocities to the 
immersed boundary, so we denote this operation by 

Ru=U, (20) 

where R E R’“’ x 2N2 and is called the restriction operator. 
The discrete delta function D, forms the heart of the 
extension and restriction operations, and we will present 
improvements to (19) and (20) in Section 3.4 by using other 
versions of D j,. 

3.2. The Semi-Implicit Method 

In this section we discuss how we actually solve equations 
(8))( 1 l), (14) using a modified form of Peskin’s original 
semi-implicit method. In order to advance the state of our 
coupled fluid-elastic boundary system by one time step, we 
start with the fluid velocities, II;, and the boundary position, 
Xz, at time level t,,. With this information, we can solve for 
the new fluid velocity, u;+ ‘, and the new boundary posi- 
tion, X;t + ’ at time level t, + i . We solve the fluid equations 
with Chorin’s method as in Fauci [7] or as in Bell et al. [3]. 
To update the boundary position, we discretize (14) in a 
second-order accurate manner using the trapezoidal rule 

X ntl-xn 

At 
=; (R”u”+R”+‘u”+~), (21) 

rather than the first-order accurate manner in [ 111. Since 
the immersed boundaries are either stationary or only move 
slightly, we approximate the restriction operator at time 
level n + 1 with its value at the previous time. Then (21) 
becomes 

X “+l=X”+~(R”-lu”+R”u”Cl), (22) 

where R”- ‘u” is used in place of R”u”, since we do not 
compute and save R, but, rather, we save the matrix-vector 
product U” = R”- ‘u” at each time step. 

Since we do not know the fluid velocity u” + ’ at time level 
n + 1, we use an approximation u* to obtain 

X*=X”++-‘u”+R”u*), (23) 

where X* is our estimated boundary location at time n + 1. 
The estimate of the fluid velocity at time level n + 1, u*, is 
given by 

u* = u” + At E”F*, (24) 

where, following Peskin [ 111, we neglect all terms in the 
fluid dynamics equations except the forces exerted by 
the boundary. This estimated fluid velocity is used only 
to estimate the boundary position. Once the estimated 
boundary position, X*, is calculated, we no longer use u*. 
Substituting (24) into (23) gives 

+(nf)zR”E”F* 
2 

for the estimate of the immersed-boundary location. 

(25) 
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There are a variety of functional relationships to choose In deriving the implicit method, we start with the 
from for the immersed-boundary force, F*. The simplest discretized Navier-Stokes equations, 
would be to model each point on the immersed boundary as 
a Hooke’s law spring, U 

n+I-Un 

At 
+@f+l”+(-3(u”+’ + u”) 

(26) 
- [@Do,+ uD;)u]“+‘/* 

F* = S(X;l+’ -X*), 

where S E R*” x 2m is the diagonal stiffness matrix and Xi+ ’ 
is the known equilibrium position at time n + 1. More 
sophisticated models might allow S to be a nonlinear 
function of displacement or incorporate a damping term, in 
which case (26) would be modified to include a velocity 
term. This would allow viscoelastic behavior to be treated. 

In order to solve for F*, we substitute (25) into (26) and 
solve for F* to obtain 

x x;;+’ 
( 

-X”-!!(R”-‘+H”iu” . 
> 

127) 

Using (27) we calculate the force exerted at the estimated 
new boundary position, X*, at time level n + 1 and use this 
to solve the full Navier-Stokes equations to get u”+ i. 

When we actually solve (27), we make the additional 
approximation R”E” = /?I, where B = 3/8/r. The details of 
this derivation are given in the Appendix. 

We then solve for the estimate of the force at time-level 
n+ 1, 

-X”-+!(R”-L+RN)Un (28) 

+f”) (30) 

Du , n+l=o (31) 

where D and G are the discrete divergence and gradient 
operator, and Dz, 0: are the centered difference operators 
in the x and y directions. The nonlinear convection term at 
time level n + f is calculated by an unsplit second-order 
Godunov method. The solution to (30) and (31) is then 
U n+l and f+l/*. A full account of these finite difference 
operators is given in [3]. 

Collecting terms and simplifying gives 

U 
?7+l=V ,,“+~,‘++“+iF”+I , 

> 
(32) 

where V = (I - (p At/2) DG)-’ is the “viscous operator” 
and 

bn+“‘++f$DG)u”-AtGp’+“’ 

-At [(~D;+oD;)u]“+1/2+$f”, 

which includes all the information at time level n and n + 4. 
Applying (31) involves projecting u onto the divergence- 

free subspace, and this is done with the projection operator 
P. The result is then 

This force is then extended to the grid by the extension 
operation, f * = E”F*, and the velocity uN+ ’ at time t, + , is U 

n+l=pV b”+‘“++“+‘F”+ 

> 
(33) 

calculated by solving the Navier-Stokes equations with 
source terms f*. Finally, the boundary point locations are 
updated. Briefly, to project a vector field onto the divergence-free 

subspace, the divergence-free part of the vector field is 

(29) 
represented as a linear combination of basis elements. These 
basis elements are specified as linear combinations of G’. 

3.3. The Implicit Method 
A complete account of this projection operation is found 
in [3]. 

The semi-implicit method suffers from stability problems In the semi-implicit algorithm, we treated fixed immer- 
due to the large spring constants used to model the rigid sed-boundary points as obeying Hooke’s law with very 
boundaries. This stiffness makes it necessary to restrict the large stiffnesses. Now we treat the immersed-boundary 
time step to values much smaller than desirable in order to points as being one of two kinds: either flexible points that 
avoid unwanted oscillations in the nearly rigid boundary obey Hooke’s law as before, or fixed points whose velocities 
points. Using the following implicit method eliminates these are specified (either zero or non-zero). The latter points are 
unwanted oscillations. used to model fixed or moving walls whose exact location is 
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known at each time. In the implicit algorithm, we calculate 
forces F”+ ’ so that after extending these forces, solving the 
Navier-Stokes equations, and restricting the velocities, we 
get exactly the desired velocities at the fixed points, while 
the imposed forces at the flexible points and the resulting 
velocities satisfy Hooke’s law with the appropriate stiffness. 

Before we present the implicit method, we introduce new 
notation for the two groups of immersed-boundary points. 
If there are m total immersed-boundary points, we divide 
the points into two groups, q fixed points and m - q flexible 
points. This division of points leads to the following parti- 
tioning for the restriction operator, the boundary point 
locations, and the boundary forces: 

F= 
F, 2y L 1 F 11 2(m-4) 

For the q fixed points whose velocity is specified, we have 

where 

R;u n+l=fin+l 
I 2 (34) 

R, E R2y x *‘+, the restriction operator for the fixed 
points, 

ii; + ’ E R2y, the specified velocity of the fixed points. 

For the m -q flexible points, we have a coupled set of 
requirements: the new position is determined by the 
velocities according to 

X ;,+l=X;I+~(R;,-lu”+R;Iu”+‘), (35) 

and the resulting positions are related to the new forces by 
Hooke’s law, 

F ;I’ l = s,,(x;I - xi,+ ‘). (36) 

Here 

Xyi E R(2m--y), the equilibrium position of the 
flexible points, 

Xi, E R2(m-y), the location of the flexible points, 
R II E R2(m--q)x2N*, the restriction operator for the 

flexible points, 
F,, E lR*(“’ P4), the force exerted by the flexible 

points, 
S II E R2(“~~)x2(m~~), the diagonal stiffness matrix 

for the flexible points. 

Combining (35), (36), and (33) and introducing a full 
2m x 2m inverse stiffness matrix, 

s-1’ 0 0 29 [ 1 0 s,’ 2(m - 4) (37) 

29 2(m-q) 

we obtain a system of equations for F”+ ‘, 

~~“PV~“+~S-’ F”+’ 1 
=[U;Oi']-[R;,o'u"] 

+~[,::0,;:1-R”PVb”+“‘. (38) 

Equation (38) allows us to solve for the boundary forces at 
the new time level such that the fixed points have specified 
velocities and the flexible points obey Hooke’s law. Note 
that as any S, + co, we expect a smooth transition from 
flexible to fixed behavior for this point since the corre- 
sponding element of RF; ‘un approaches zero. This element 
would then be classified as being in the type I group with 
-n+l- 
UI - 0. 

In our implicit algorithm, we cannot immediately solve 
(38) for Fn+’ and then solve (33) for II”+ ‘. The reason is 
that b”+ ‘I* is dependent on the forces sent to the 
Navier-Stokes solver. Instead, we solve (33) and (38) 
iteratively as follows. First we introduce 

F ?Z+‘,V=FtZ+‘,Y-1 +6F “f I,\,- I (39) 

and require c?F”+‘.“~’ - 0 as v -+ co. Now (33) becomes 

U 
n+‘,V=pV 

( 

c”+1’2.‘-1+~E6F”+l,‘-1 , 

> 
(40) 

where c n+1/2,v-1=bn+l/2 + (dt/2) EF”+‘,“-‘. 
Going through the same derivations we used to obtain 

(38), we now have 

n+l,evl_ At 

[ 

-1 

6F TR”PVE”+;Spl 1 
x([";;']-[R;Iy'un] 
+~[xP,~x~~-R’PVe~+1~2~‘~‘). (41) 

We start the loop with F”+ ‘9’ = 0 and solve (40) to obtain 
RnPVc”f1/2~Y-1. Now we solve (41) to obtain 6F”+1,y-1 
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which we then use in (39) to update F” + ‘2”. At this point we 
can restart the loop. In practice, however, b” + ‘I2 is nearly 
constant over a time step, and we only need to go through 
the loop once. Once this loop is done, we update the 
boundary location by 

X yI+ ’ = X;, + $ (R;r- ‘un + R;,u”+ ‘). (42) 

Solving for 6 F” + ‘3” ~ ’ in (41), we need 

At TR”PVE.+$sP1 1 (43) 

each iteration. In order to avoid forming and factoring (43) 
each iteration and also each time step, we only form and fac- 
tor it once in the beginning of the program in the initializa- 
tion section using approximations R and E to R” and E” 
based on the zero displacement location of each boundary. 
This is justified by the fact that the displacements of the 
flexible boundaries are quite small. 

3.4. Discrete Delta Function Accuracy 

In order to discretize the integral equations (10) and (14), 
we have to introduce a discrete form of the delta function. 
The discrete delta function forms the heart of the extension 
and restriction operations, and any improvements that 
could be made would contribute to the overall improvement 
of the immersed boundary method. With this aim in mind, 
we present in the following an analysis of discrete delta 
function accuracy in the one-dimensional case. 

The accurate representation of a delta function on a finite 
mesh raises two important issues which are the mesh 
accuracy and the translation invariance of such a represen- 
tation. By mesh accuracy we mean the error due to the size 
of the mesh as measured in units of the mesh size, h. By 
translation invariance, we mean the effect of the location of 
the delta function in relation to the grid points. First we will 
discuss the accuracy issue and follow this with a discussion 
of the translation invariance issue. 

Consider the following problem: Given a function defined 
on a finite grid, approximate the value off(a) by interpola- 
tion, 

f(x)= jm f(x)d(x-cc)dx 
= ;id(xj- a)f(x,). (44) 

If CY coincides with one of the mesh points xi, then the 
problem is easy since the solution is just f(xi). If c( does not 
coincide with a grid point, then we have to approximate 
6(x-a) somehow and use this approximation d(x-a) in 

(44). Once a choice is made for d(x - CI), we can evaluate the 
accuracy by looking at the resulting error 

E=f(a) - 1 hd(xj- cc)f(x,). (45) 

We investigate several different discrete delta functions 
and analyze the resulting error for the case where 
f(x) = exp( - /x - ~11). This function was chosen because it is 
continuous at CI but all its derivatives are discontinuous. 
This is the same type of behavior we see in the fluid velocity 
across an immersed boundary. Shown in Fig. 2 are the 
various discrete delta functions that we study. These fall into 
three classes: the hat functions, Peskin’s cosine functions, 
and the linear extrapolation functions. 

The hat functions are defined as 

Irl <w 

otherwise, 

where w is the half width and the value of I is a “shape” 
parameter. When 1 is large the hat function becomes more 
rectangular. The top two plots in Fig. 2 are the hat func- 
tions. The left plot is the 4h and 2h hat with I = 1. The right 
plot is the 2h hat with 1= 1, 2, 3, 100. The larger 1, the more 
square the shape. 

The cosine functions we studied are defined as 

d(r)= o 

{ 

(1 + cos(7cr/w))/2w, Irl < w 
2 lrl > w, 

where w is again the half width. The lower left plot in Fig. 2 
shows cosines of width 2h, 4h, and 6h. 

The linear extrapolation functions are defined as 

d(r) = 

’ (2 - 4~ + (3 - 8e)(r/h) + (1 - 3&)(r/h)‘}/h, 
-2h<r< -h 

(2 - 2~ + (3~ - l)(r/h)2}/h, 
-h<r<h 

{2-4~+(8~-3)(r/h)+(1-3~)(r/h)2}/h, 
h<r<2h 

0 . ) otherwise, 

where E is used to perturb the linear extrapolation function 
to make it more translation invariant. This will be discussed 
further below. This discrete delta function is derived by a 
linear extrapolation using two points on each side of r = 0. 
A straight line is fit to each set of two points and then 
extrapolated to the discontinuity. A weighted average of 
each extrapolation determines the value of the function at 
the discontinuity. These weights are determined by the 
relative distance the discontinuity is from each grid point. 
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discrete delta functions discrete delta functbns 

discrete delta functions discrete delta functbns 

-3 -2 -1 0 1 2 3 -2 -1 0 1 2 

FIG. 2. Discrete delta functions. 

The lower right plot in Fig. 2 shows the linear extrapolation in Fig. 3 are these results for a selection from each group. 
functions for E = 0, h/8, h, 2h, 4h. (There is not much dif- The slopes for the various hat and cosine functions are - 1 
ference between the case E = 0 and E = h/8, so they appear to which means the error as a function of h is first order. The 
be almost the same line). All of these functions also satisfy slope for the linear extrapolation is -2 which means the 
the requirement that sTuo d(x - a) dx = 1. error is second order. 

Each of these functions was used in (45) with four dif- 
ferent mesh sizes h = l/N, N= 16, 32, 64, 128. The resulting 
errors show that the interpolation-type functions, the hats, 
and the cosines, are first-order accurate, while the 
extrapolation functions are second-order accurate. Shown 

To see why we get these results, we expand f(z) in a 
Taylor series about the point CI, substitute these expansions 
into (45), collect terms, and see what remains. In order to 
keep the analysis from becoming encumbered with excessive 
detail, we compare two cases, one from the interpolation- 
type discrete delta functions and one from the extrapolation 
type. We expandf(xj- t 1, f(x,),f(x,+ 1 ), andfbi+ J about 
f(cr.) to obtain 

- linearextrap 

.\. 

-..-..... 4h m, 

-_- 4hhar 

\. 

- - 2h haL I-1 

10 50 100 500 

N 

FIG. 3. Discrete delta function error as a function of grid size. 

SS1/9S/l-II 

153 

f(x,~,)=f(a)-(a-(j-l)h)fh- 

+ $(u- (j- l)h)‘y;p + . . (46) 

f(xj)=f(~)-(-3)f:,- 

+ $(a -jh)*f;p + . . (47) 

f(Xj+t)=f(a)+ ((i+ l)h-a)f&+ 

+f((j+l)h-cr)‘f;+ + ... (48) 

f(Xj+*)=f(CI)+((j+2)h-Cofh+ 

+;((j+2)hLa)*f;+ + . . . . (49) 
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wherefy? is thejth derivative offjust to the left of c1 and 
f:J is the jth derivative offjust to the right of CL Next we 

choose c1= xj + h/2 and the 2h wide hat function which gives 
d(~~_~--a)=O, d(xj-a)=1/2h, d(xi+,-cc)=1/2h, and 

substitute these into (45) and note that Ci hd(x, - a) = 1. d(x,+ z - c() = 0. This particular value of u will give the maxi- 
This gives for the error mum error. The error then becomes 

-hd(x,-a){ -(a-jh)f;- 

+ ;(u -jh)‘j-;p + . } 

E= -hd(x,-,-a)(-(a-(j-l)h)f:, 

+ +(u - (j- l)h)*f;- + . . . } 

-hd(xj + 1 -aH((j+ l)h-u)f&+ = -; (y*+ -f&-) + “’ 

+;((j+l)h-a)*f:++ . ..} 
= O(h). (51) 

-hdb,+, -~H((j+2)h-u)f:,+ 
+ f((j+2) h-a)*f:+ + ... }, (50) The error is first order wheneverf’ is discontinuous at cc 

On the other hand, suppose we choose the linear 
where o! lies between x, and xj+ , . For our example, we extrapolation function with E = 0. For this we have 

translational variance error, h=l /I 28 

Lq-pJ-) 

-.... lin. ext.. eps=4h 

translational variance error, h=l/128 

- 6h cosine 
___..... 4h msine 

--- 4hhat 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

BETA BETA 

translational variance error, h=l/l28 

----_-.. 2h hat, I=1 

- - 2h hat, I=3 

0.0 0.2 0.4 0.6 0.8 1.0 

BETA 

FIG. 4. Discrete delta function errors due to translation variance. 
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d(Xj-l-Cc)= -I/dh, d(Xj-CC)=3/4h, d(Xj+ 1 -a) = 3/4h, 
and d(x,+ Z - c() = - 1/4h. The error then becomes 

= O(h2). (52) 

The other discrete delta functions give similar results. The 
numerical results are thus supported by the analysis. 
However, we really only have half the picture so far. The 
other half has to do with translation invariance. 

The issue of translation invariance can be understood 
with the following problem. Imagine now we are evaluating 
the right-hand side of (44) for a given grid with a fixedf(x) 
and CI. Also assume c1 is located between two grid points. 
Now suppose we translate the grid to the right a small dis- 
tance such that the fixed point M is still between the same 
two grid points. When we evaluate the right-hand side of 
(44), we now obtain a different approximation tof(cr). The 
difference in the results is due solely to the translation of the 
grid. 

In our use of discrete delta functions in the extension 
and restriction operations, we would like the error due to 
translation to be as small as possible. To test for this 
effect, we introduce a parameter p, with 0 < b 6 1, into our 
specification of the grid. Our grid points then become 
x,+s= (j+P)k and we look at the error 

E= (~)-Chd(xj+,-a)f(xi+I,). 

We look at four mesh sizes, h = l/N, N = 16, 32, 64, 128, 
with jI varying from 0 to 1, and all of the discrete delta func- 
tions listed above. Figure 4 shows the results for three cases 
for N = 128: linear extrapolation functions, the wide func- 
tions 4h hat, 4h and 6h cosines, and the narrow functions 2h 
hat and 2h cosine. In the upper left of this figure we can see 
two distint types of errors. For example, the smallest error, 
that of linear extrapolation (E = 0), has zero error for fi = 0 
and B = 1, while in the range 0.2 < j3 < 0.8, the error is fairly 
constant. On the other hand, in the upper right, Peskin’s 4h 
cosine has a larger error for all p, but the error is relatively 
constant over the whole range 0 d /I < 1. In the lower left of 
the figure, we see that the narrow functions all behave 
similarly. In fact, we cannot distinguish any difference 

x 10 50 100 500 

N 

FIG. 5. Discrete delta function error as a function of grid size at 
p=o.s. 

between the 2h cosine and the 2h hats with I= 2, 3, 100. We 
also know from the analysis above that the extrapolation 
functions are O(h2) while the interpolation functions are 
O(h). A desirable feature would be to have both O(h’) 
behavior along with a flat profile shown by, for example, the 
4h cosine. Then, when we solve a problem with a fixed h and 
a moving source term, additional errors due to translational 
variance will be minimized. Bu perturbing the linear 
extrapolation function by a small parameter, we can achieve 
small translation variance, as shown in the upper left of 
Fig. 4 for the cases E = h/8, h, 2h, 4h (E has to be a function 
of h to maintain second-order accuracy). In addition we also 
keep the desired O(h2) behavior which is shown in Fig. 5. 

From the analysis and numerical results presented in this 
section, we now know how to more accurately perform 
extension and restriction operations in one dimension. 
These ideas carry over in a straight forward manner to two 
dimensions. 

4. APPLICATIONS 

In this section, we present several case studies of the 
cochlea using our improved method. We start comparing 
the semi-implicit and the fully-implicit method in order to 
show that in fact the fully-implicit method is an improve- 
ment over the semi-implicit method. This is followed by 
a mesh refinement study where we look at a particular 
boundary configuration and solve our problem on grids 64 
by 16, 128 by 32, and 256 by 64. This is followed by a study 
of transient response of the model. Finally, we examine how 
well our model compares with experimental data. 

4.1. Semi-implicit us Fully-implicit 

We test our improved method by looking at the following 
example. We used a 64 x 64 point periodic fluid domain. 
Shown in Fig. 6 is the fluid domain along with the 201-point 
immersed boundary. The outer boundaries are rigid while 
the interior boundary is flexible and represents the basilar 
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was 0.01 (1 - cos(27c At 0)). For the extension and restric- 
tion operations, we use the linear extrapolation version of 
the discrete delta function with E = 0. 

The travelling wave on the basilar membrane along with 
the stationary wave is shown in Fig. 7 for the semi-implicit 
method with o = 125 Hz. Figure 8 shows the upper half of 
the stationary envelopes for the fully-implicit method, for 
the semi-implicit method, and those from the asymptotic 
results from LeVeque, Peskin, and Lax [9]. The basilar 
membrane consists of 42 points, where live points at each 
end are treated as rigid. We include five rigid points at each 
end to show that the fully-implicit method does keep these 
rigid points stationary. We can also notice that the rise and 
decay of the stationary envelope is what we would expect. 
That is, the left side of the envelopes rise up slowly to the 
peak, while the right side decays rapidly away. 

Also shown in this figure are the phase plots for all four 
frequencies tested. Here we see an increase in phase shift for 
a given membrane location. As we can see there is quite a 
difference between the phase shift for the semi-implicit 
method and for the fully-implicit method. We know from 
the asymptotic analysis of LeVeque, Peskin, and Lax [9] 
that the phase should be approximately 
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FIG. 6. Fluid domain with the 201-point cochlea 

membrane. On the lower left immersed boundary the gap 
represents the round window. The corresponding three 
points on the upper left boundary have a prescribed velocity 
and represent the piston-like motion of the stapes. The 
arrows in Fig. 6 show the fluid velocity field after 2048 time 
steps. The place on the basilar membrane that is undergoing 
maximum displacement can also be seen about midway 
down the basilar membrane at x = 0.4. Here we see a dis- 
tinct fluid motion associated with the membrane vibration. 
Values of the physical parameters included: density 
p=1.0gcm-3,andviscosity~=0.01 gss’cm-‘.Thetime 
step was At = 0.00025 s. The stapes forcing frequencies we 
use are w = 31.25 Hz, 62.5 Hz, 125 Hz, and 250 Hz. The 
stiffness is S, = lo6 dyne cm -3, and I = - 7.6. For com- 
putational convenience we have nondimensionalized the 
space variable x so 1 is dimensionless. The stapes velocity 

(54) 

where & is a constant and x is the distance along the basilar 
membrane. From this equation we can see that for a fixed 
value of x, as we increase the frequency o, the phase should 
increase as the square of o. For the fully-implicit method we 
do see this. For example, at x = 0.35 we have the ratio 
4 125Hzl4 250Hz = 4.45, which is 11% higher than the expected 
value of 4. For x = 0.45 we have $125Hz/~62,5Hr = 3.82, which 
is 4.5 % lower than the expected value of 4. If we compare 
this to the semi-implicit method, we see, for example, for 
x=0.42 we have ~~~~~~~~~~~~~~~ 2. Clearly, the phase 
relationship is not quadratic in w. 

To show the phase shift of points along the basilar mem- 
brane from the fully-implicit method, we look at a time trace 
of each point as shown in Fig. 9. In this figure, the time 
traces at the bottom correspond to the points nearest the 
stapes and the traces at the top of the figure correspond to 
the points farthest away from the stapes. We see in this 
figure that the points are oscillating at the same frequency 
but the farther from the stapes the more the phase shift. 
Another interesting feature of this figure is the presence of a 
long wavelength wave that initially travels down the basilar 
membrane and eventually dies out. This wave is most 
pronounced at the top of the figure. The phenomenon of a 
transient long wavelength wave is what is responsible for 
setting up the phase shift that occurs at steady state as the 
travelling waves move down the basilar membrane. 

125 Hz 

0.0 0.2 0.4 0.6 

i3M distance 

0.8 1 .o 

FIG. 7. Basilar membrane displacement with the semi-implicit 
method and w = 125 Hz. 
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FIG. 9. Time traces for basilar membrane points for the 64 by 16 fluid 
mesh. 

Further proof of the improvements the fully-implicit 
method gives can be seen in Fig. 10. Here we plot envelope 
peak location versus the log of the frequency. We show 
three lines, the semi-implicit, the fully-implicit, and the 
asymptotic results from LeVeque, Peskin, and Lax [9]. For 
the asymptotic formula, 

- &log(o), (55) 

where xp is the peak location, the slope is -0.1475 and the 
intercept is 1.223. For the fully-implicit method the slope is 
- 0.1443 and the intercept is 1.186. For the semi-implicit 
method the slope is -0.1736 and the intercept is 1.227. 

All of these results show that the fully-implicit method is 
an improvement over the semi-implicit method. 
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FIG. 10. Envelope peak location versus frequency. 

4.2. Mesh Refinement 

To actually determine the overall accuracy of our 
method, we tested a particular configuration of the cochlea 
on three different scales. The three fluid domains were 64 by 
16, 128 by 32, and 256 by 64. For each of these three cases, 
we held the ratio of time step to space step, At/h, constant. 
For the 64 by 16 case, At = 0.0005 and h = l/64. For the 128 
by 32 case, At = 0.00025 and h = l/128. For the 256 by 64 
case, At = 0.000125 and h = l/256. The stapes velocity for all 
three cases was 0.01 (1 - cos(2nto)). Other constants used 
were S, = lo6 for the basilar membrane, 1, = - 7.6, p = 1 .O, 
p = 0.01, and o = 62.5 Hz. For each of these three cases we 
used a combination of both fully-implicit points and semi- 
implicit points. The stapes and the basilar membrane were 
treated fully-implicitly while the rigid walls were treated 
semi-implicitly. In general, this combination of the two dif- 
ferent types of points allows the critical points to be handled 
in the more stable fully-implicit manner, while the not so 
critical points such as rigid boundaries some distance from 
high flow regions can be handled in the less computationally 
intensive semi-implicit manner. The stiffness for the semi- 
implicit rigid points was 5 x 104. For all three cases the 
model was executed to the same final time of 0.128. 

Figure 11 shows the velocity field at the final time for the 
64 by 16 fluid mesh case. Also shown are the boundary 
points for our model cochlea. The stapes is at the upper left 
corner and the basilar membrane is running horizontally 
through the middle. The rigid outer walls are located at the 
far right and bottom of each figure. We can see quite well the 
velocity patterns near the location on the basilar membrane 
of maximum displacement. 

To calculate an overall accuracy we look at how the 
maximum stationary envelope peak is converging to some 
final value. We assume a form for the error of E = Chp, 
where E is the difference between the envelope peak at a 
given mesh and the envelope peak of the true solution. Since 
we do not know the true magnitude we can still use this 
formula to calculate p. Let Ei be the error for mesh i, where 
i= 1 is the 64 by 16 mesh etc., then 

When we substitute in the values for Ei, we calculate a value 
for p of 1.75. We can conclude that we do have a second- 
order accurate method. 

4.3. Transient Response 

One of the main features of our model is the ability to 
analyze transient responses. Most previous mathematical 
models have only looked at steady state responses of the 
basilar membrane. One study done by Zias [20] used the 
steady state model of Steele and Taber [ 141 to generate 
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FIG. 11. Velocity field for the 64 by 16 fluid mesh at t = 0.128. 

1 .o 
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FIG. 12. Basilar membrane displacement for the transient signal case. The dashed line is the envelope swept out by the basilar membrane. The solid 
line is the position of the basilar membrane at t = 0.512. 
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normal mode shapes of the basilar membrane. These could 
then be combined in the correct manner and the inverse fast 
Fourier transform taken to give the time dependent solution 
to varying signals. This is the only transient response study 
of which we are aware. With our model we can see such 
features as the initial long wavelength wave that propagates 
down the basilar membrane that “sets up” the phase shift of 
the boundary points. We can also study that the basilar 
membrane behavior is like when signals of differing frequen- 
cies are presented at the stapes at different times. 

We used the same fluid domain and boundary conligura- 
tion for this study as we did for the mesh refinement study 
with a fluid grid of 256 by 64. We used At = 0.00025 and let 
the stapes oscillate at 250 Hz for 1024 time steps. After this 
we added an additional excitation of 50 Hz to the 250 Hz 
signal. Shown in Fig. 12 is the basilar membrane displace- 
ment at t =0.512. Here we see two peaks, the leftmost 
corresponds to the 250-Hz signal and the rightmost to the 
50-Hz signal. Shown in Fig. 13 is the normalized time trace 
of each of the boundary points. The time traces in the 
bottom of the figure show the higher frequency, 250 Hz, that 
are present for the whole time, and the traces in the top of 
the figure show the lower frequency, 50 Hz, that only 
appears for t > 0.256. We can also see at the top of this figure 
the long wavelength wave that is responsible for setting up 
the phase shift of the basilar membrane points. 

These figures clearly demonstrate the power of our 
method to observe the transient behavior of the basilar 
membrane. 

4.4. Comparison to Experimental Data 

In this section we compare the results of our model to the 
experimental data of Rhode [ 121 taken from squirrel 
monkeys. In most experimental data such as that of Rhode 
[ 123, the measurement location on the basilar membrane is 

0.1 0.2 0.3 0.4 0.5 0.6 

time 

FIG. 13. Time traces for the transient signal case. 
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fixed and the frequency of input sound is varied. In this way 
many different frequency points can be taken with the 
measurement device fixed. In our computational model, we 
fix the frequency and calculate the amplitude and phase at 
every point on the membrane. This restricts how many 
frequencies we can measure simply due to the cost of 
computing. To run our 256 by 64 model with 502 points 
(229 of which are treated implicitly) on a Cray X-MP/48 for 
1000 time steps takes about 10 min of Cray time. Therefore, 
we compare our model output to the data of Rhode [ 123 at 
only seven frequencies, 1,4, 5, 6, 7, 7.5 and 8 kHz. For these 
tests we used the same configuration as that of the 256 by 64 
mesh in the mesh refinement section. The stiffness profile 
was chosen so as to best match the amplitude data of Rhode 
[12].WeusedS,=8x109and~~=11.5.Foreachofthefive 
tests, we used At=o-l/16 and ran each out to 512 time 
steps. The results at the same time t from each test were 
compared to those of Rhode [ 121. As pointed out by Allen 
and Sondhi [Z] who compare their model to the results of 
Rhode [ 121, no measurements of the parameters S, and i 
have been made for the squirrel monkey. Allen and Sondhi 
[2] used S, = 2.8 x lo9 and i = 0.9 - 1.5. If we rescale our 
value of ;I to be on the same basis, we use 1= 1.6. 

Figure 14 shows the results of our tests plotted with the 
experimental data of Rhode [ 121. As can be seen, our data 
agrees quite well in the region we tested. We also compare 
the phase data as well. Shown in Fig. 15 is the phase data 
from Rhode [12] and our results. Our phase data was 
adjusted so that the I-kHz point coincided with the 1-kHz 
point of Rhode [ 121. Here we also can see good agreement. 
Notice that there is some discrepancy at 8 kHz, where we 
see our results are slightly higher than the experimental 
data. This may indicate the actual basilar membrane may 
undergo a larger phase shift than what would be expected 
from the o2 dependency we expect from the asymptotic 
results of LeVeque, Peskin, and Lax [9]. Even though the 
comparison of our results with the experimental data 
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FIG. 14. The data from Rhode [12] is the ratio of basilar membrane 
displacement to malleus displacement normalized to 80 dB SPL while the 
data from this work is relative basilar membrane. 
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FIG. 15. Basilar membrane phase from Rhode [ 121 and this work. 

appears good, this agreement needs to be qualified. Our 
tests were conducted with equal stapes velocity and then the 
basilar membrane displacement amplitude was normalized 
to equal power input. The data points were then shifted so 
that a curve drawn through our data would agree with the 
data from Rhode [ 123 as well as possible. This is the same 
as expressing our data relative to some fixed value such as 
1 A. The experimental data of Rhode [ 121 were collected at 
various sound pressure levels and then normalized to 
80 dB SPL. What was then calculated was the ratio of 
basilar membrane amplitude to malleus amplitude. (The 
malleus is the bone of the middle ear that touches the ear- 
drum.) This means that the experimental data reflects the 
nonlinear transfer function that exists between the eardrum 
and the oval window. No such nonlinear transfer function is 
present in our calculations of equal power input. In addi- 
tion, the uncertainty in the values of S, and ;1. make the 
agreement between the two sets of data shown in Fig. 14 
better than what might be expected from the rather coarse 
model that was used here. 

5. CONCLUSIONS 

We have presented a modified version of Peskin’s original 
immersed-boundary method [ 111. From the results of the 
previous section, we draw several conclusions. 

The semi-implicit method takes advantage of the small 
movements of the immersed boundaries and linearizes the 
calculation of the forces exerted by the immersed boundary 
points. Numerical experiments show that this approach is 
suitable for situations where the immersed boundary is not 
in a flow regime that requires large forces to maintain its 
position. In situations where there are flow rates that do 
require the boundary forces to be large, we describe a fully- 
implicit method that can be used. This approach removes 
the instabilities of the semi-implicit method and makes 
modelling of such demanding cases as the cochlea possible. 

We show how to make the operations of extension and 
restriction more accurate. By analyzing a one-dimensional 
model problem, we see how to achieve second-order 
accurate solutions by choosing the appropriate discrete 
delta function. 

When the modified method is applied to solving a two- 
dimensional model of the cochlea, we see that: 

(1) the model can predict the biomechanical behavior 
of the cochlea such as travelling waves and stationary 
envelopes, 

(2) the results from the model are in close agreement 
with the asymptotic results of LeVeque, Peskin, and 
Lax C91, 

(3) the results from the model are in close agreement 
with the experimental results of Rhode [ 121, 

(4) transient analysis is possible, which should be 
useful in speech analysis. 

We have presented other results elsewhere [4] that also 
show that with a nonlinear stiffness for the basilar mem- 
brane, the model predicts the perception of decreasing pitch 
with increasing loudness, and that bone conduction can 
excite the basilar membrane in a manner similar to excita- 
tion by the stapes. 

Even though the results demonstrate the success of the 
model, there are some aspects that have not been handled as 
well as necessary. One of these is the spatial resolution of the 
travelling wave in the envelope peak region. To adequately 
resolve the envelope shape at high frequencies requires 
many fluid grid and boundary points. The largest version of 
the model used here, with 256 x 64 grid points, is too small 
to adequately resolve the spatial wave over the whole audio 
frequency range. A larger mesh model is needed, say on the 
order of 1000 x 500. Another problem is the limitation of 
using two dimensions. By lumping the mass of the tectoral 
membrane and the Organ of Corti together with the basilar 
membrane, the model over-simplifies the geometry. In addi- 
tion, the effect of the coiling of the cochlea on the travelling 
waves could not be investigated using only two dimensions. 
These problems can only be dealt with in a full three-dimen- 
sional model. 

APPENDIX 

When we actually solve (27), we make the additional 
approximation R”E” = /?I, where b = 3/8h. This approxima- 
tion eliminates the need to solve a linear system for F, since 
the matrix in (27) becomes diagonal. We derive this 
approximation as follows. The extension operation EF is 
defined by (15) and the restriction operation Ru by (16). 
Putting these together, we have for the kth element of a 
vector derived from the restriction-extension operation 
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(REF),= 2 h*D,(X,) f As Dq(X,) F, 
i,j=l /= 1 

=fAs{ 2 h%j(&) Di,(X,) 
I= 1 i,j= 1 

= f Asg(X,-&IF,, (56) 
I= I 

where g(X, - X,) = CTj=, h*D,(X,) DU(X,). The value ofg 
only depends on the separation between X, and X,. We also 
know g(X, - X,) is zero when [IX, - X, 11 B 4h because of the 
way the D, were defined. If we assume F is constant over the 
region where g is nonzero, then we obtain 

(REF)k=F, f dsg(X,-X,). 
I= 1 
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